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ABSTRACT
In this work, we propose a compact multi-task architecture
based on deep learning for remote sensing scene classifica-
tion and image quality assessment (IQA) simultaneously. The
model can be trained in an end-to-end manner, and the ro-
bustness of classification is improved in our method. More
importantly, by exploiting IQA and super-resolution, the ac-
curate classification results can be obtained even if the images
are distorted or with low quality. To the best of our knowl-
edge, it is the first successful attempt to associate IQA with
scene classification in a unified multi-task architecture. Our
method is evaluated on the expanded UC Merced Land-Use
dataset after data augmentation. In comparison with some
other methods, the experimental results show that the pro-
posed structure makes a great improvement on both classi-
fication and IQA.

Index Terms— Remote sensing, scene classification, im-
age quality assessment, image super-resolution, multi-task
learning, deep learning

1. INTRODUCTION

Recently, remote sensing scene classification tends to attract-
ing more attention due to its wide range of applications, such
as disaster relief, land-cover/land-use classification, and ur-
ban planning. However, intricate structures involved in re-
mote sensing images make it a challenging task to extract
valuable features from the images. To remedy this problem,
great effort has been made for research of remote sensing
scene classification algorithms [1, 2, 3, 4, 5]. In spite of this,
there are still some issues to deal with, for example, it is diffi-
cult to obtain accurate and robust results from remote sensing
images with very low quality.

Generally in practice, remote sensing scene images suffer
from various degradation not only from the unstable imag-
ing system but also from harsh environments like extreme
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weather, illumination and atmosphere [6]. Therefore, al-
though these existing methods can achieve high accuracy
in some datasets of scene images classification, there is a
still certain limitation: they are mainly for clear and simple
images but not for distorted poor quality ones. However, a
robust system for remote sensing scene classification should
also work well and produce accurate results even in complex
conditions.

With the development of image quality assessment in re-
mote sensing [6, 7], it is becoming more and more suitable
to break through the above limitation. Image Quality Assess-
ment (IQA) can be divided into two types: subjective IQA and
objective IQA. The former approach fully considers the visual
experience of the human eyes, which is very labor-intensive
and time-consuming. The latter aims to calculate the param-
eters representing the image quality according to a predeter-
mined standard algorithm and finally obtain the image quality
scores, which ideally meets our requirements. Further, objec-
tive IQA can be divided into Full-Reference IQA (FR-IQA),
Reduced-Reference IQA (RR-IQA) and Non-Reference IQA
(NR-IQA). FR-IQA contains the pristine reference image
and the distorted one, while NR-IQA only operates on the
distorted ones. Due to its widely applications, NR-IQA is
becoming more important. In the early works, handcrafted
features are extensively used for remote sensing IQA, such
as structural similarity [8]. However, as this task becomes
more difficult, these existing methods are not suitable for our
complex application scenarios. Inspired by IQA-CNN [9],
we explore applying Convolutional Neural Networks (CNN)
for remote sensing IQA. In addition, scene classification and
IQA are integrated in this work, since multi-task learning has
demonstrated its ability on discriminative classifiers [10].

After evaluating image quality, in order to further con-
tribute to other tasks, the images are expected to be post-
processed in the next step, such as image super-resolution.
Image Super-Resolution (SR) refers to the construction of
corresponding high-resolution images from the observed low-
resolution ones. It has been widely used in remote sensing and
medical images. Recently thanks to the outstanding achieve-
ments of CNN in other fields, CNN is increasingly applied to
image SR. Among them, DRCN [11] is a representative al-
gorithm based on single-resolution reconstruction, which ob-



tains competitive results.
To address the problems depicted above, in this paper a

novel architecture is proposed, which can accurately classify
the remote sensing scene images with low quality. The con-
tributions of this work can be summarized as follows:

(1) We design a robust and end-to-end multi-task architec-
ture. This architecture can adaptively process images
based on their quality scores. With the work of image
quality assessment (IQA), it is able to obtain categories
and IQA scores of input images simultaneously. To the
best of our knowledge, it is the first successful attempt to
associate image quality assessment and remote sensing
scene classification in a unified multi-task architecture.

(2) Image super-resolution [11] is added after IQA, and this
module improves the resolution of low qulity images,
which can contribute to the performance of scene classi-
fication.

2. OUR METHOD

The overview of our proposed architecture is presented in Fig.
1. The main components of our algorithm are as follows.
First of all, the parameters sharing CNN is used to extract fea-
ture from an input image. Then two branches of several fully
connected layers after pooling operations are exploited to ac-
complish two different but related tasks. One is remote sens-
ing scene classification, the other is image quality assessment
(IQA). Meanwhile the IQA module generates a quality score
to represent the credibility of the predicted classification re-
sult. If not confident, the input image will be preprocessed by
the image super-resolution module, and its output will be used
as a new input to the multi-task framework. Along with the
IQA and super-resolution stages, the scene images are classi-
fied more accurately. Moreover, the proposed algorithm is ro-
bust to distorted images with low quality, and it can be trained
in an end-to-end manner easily.

2.1. Shared CNN for Multi-task Learning

For better performance, remote sensing scene classification
usually operates at feature levels, as is IQA. Therefore, the
CNN module is designed for feature extraction. As illustrated
in Fig. 1, feature maps will be obtained immediately from
the input images through CNN without any preprocessing op-
erations. More importantly, we apply the idea of multi-task
learning here, so that the parameters in this module are shared
by two tasks. The feature map can be directly used for scene
classification and IQA, which avoids repeated feature extrac-
tion, greatly reducing computational resource and time con-
sumption.

Even if the CNN are shared, there are still millions of
parameters to be adjusted. However, the dataset of remote
sensing scene classification usually is far from satisfied which

only consists of several thousands images. So it should be
noted that the dataset used in our method requires data aug-
mentation, for example, adding noise, blurring images and
degrading resolution. Another purpose of these operations is
to provide effective training samples for the IQA module. Our
implementation of CNN is based on the modified VGGNet-
16.

2.2. Joint Scene Classification and IQA

In this section, we briefly present the design of multi-task
module as described in Fig. 1. It is composed of two
branches: remote sensing scene classification and IQA. Then
we introduce the two different loss functions and the total
loss function applied to these tasks respectively.

In the classification branch, we design three fully con-
nected layers of 512 nodes each after a max pooling opera-
tion. The part of fully connected layers is a 512−512−512−n
structure, where n denotes the total number of categories to
classify. Then its output will be fed to softmax layer, and
the probability of each class is obtained. Hence one with the
highest probability is selected to represent the class of the in-
put image. While in the quality assessment branch, inspired
by [9], we proposed a network composed of four layers. As
shown in Fig .1, the pooling operations reduce each feature
map come by shared CNN to one max and one average. Two
fully connected layers of 800 nodes each follow the pooling.
Finally, the last layer is a simple linear regression with a one
dimensional output that gives the quality score [9]. In this
paper, the range of IQA scores is fixed to [0, 10].

The design of loss functions is essential for multi-task
learning, which contributes to the performance directly. In
our proposed architecture, the total loss function can be for-
mulated as

L = λcLc + λiLi, (1)

where Lc and Li represents the losses for scene classifica-
tion and image quality assessment, respectively, and λc and
λi weighs the importance between these two losses. In our
experiment, we set both λc and λi to 1.

In the stage of remote sensing scene classification, we use
softmax cross entropy loss function given by

Lc =
∑
j

`(ŷj , yj), (2)

`(ŷ, y) = −yT log ŷ, (3)

where ŷ and y represent the prediction (i.e., the output of soft-
max layer) and its ground truth, respectively. The softmax
function is denoted as

ŷj = softmax(zj) =
ezj

Σjezj
. (4)

For the loss of IQA task, Li is the `1 norm of the predic-
tion error, as defined in [9].
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Fig. 1. Overview of the components of our proposed architecture

2.3. Super-resolution for Selected Images Using DRCN
[11]

If the quality of an image is low, the predicted score from IQA
module will be low. When it is above the threshold η, our
algorithm will normally output the classification result and its
quality score. Nevertheless, if the predicted score is below η,
the input image will be selected and then sent to the image
super-resolution module automatically. In the experiment, we
set η to 8.0.

It has been shown that after super-resolution, images were
more easily classified correctly. Moreover, there are many
proposed related methods based on CNN. They can ideally
meet our requirements. For this reason, we apply the algo-
rithm DRCN proposed in [11] to our model. DRCN outper-
forms many other algorithms [11], and we directly adapt it for
low quality images selected by our IQA module. It is worth
noting that super-resolution will change the size of images,
which affects the fully connected layers. To resolve this is-
sue, we use global pooling instead of normal pooling in the
pooling layer. To the best of our knowledge, this strategy that
adapt super-resolution after IQA is proposed in the first time.

3. EXPERIMENTS

To evaluate our proposed model, we trained and tested it on a
public remote sensing scene classification dataset named UC
Merced Land-Use (UCM) dataset [12]. This dataset contains
2100 scene images, which are divided into 21 typical land-use
scene classes.

However, UCM dataset can only be used to train classi-
fication network, but there is no scene image dataset which
contains image quality scores. The labels of quality scores is
indispensable since IQA model should be trained simultane-
ously. Therefore, we apply data augmentation to this dataset.
With operations adding white noise on images, blurring and
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Fig. 2. The sample and image quality label distribution his-
togram of UC Merced Land-Use dataset after data augmenta-
tion.

degrading images, and reducing resolution of images, the to-
tal number of images for training and testing overall frame-
work is expanded from 2100 to 21000. Data augmentation
not only improves classification performance, but more im-
portantly, provides the training data for IQA module which
requires low-quality and low-resolution images. Further, we
generate quality scores as ground truths using a full-reference
IQA method named FSIM [13]. As shown in Fig. 2, the
original images in UCM dataset are used as reference images,
while the ones obtained by data augmentation are used as the
distorted. The label distribution histogram of IQA module
can be seen in Fig .2 clearly. With the above approach, our
model can be trained in an end-to-end manner easily.

Stochastic Gradient Decent (SGD) is used to train our



model. The parameters are set as follows: the learning rate is
set to 0.001 and the batch size is 100. Dropout and regulariza-
tion are both adopted to prevent overfitting in the experiment.
In general, for the UCM dataset, we choose a common ratios
using 80% samples selected randomly for training. Overall
accuracy (OA) is used as evaluation measurement for scene
classification. Besides, we follow the same protocol as in [9]
to use Linear Correlation Coefficient (LCC) and Spearman
Rank Order Correlation Coefficient (SROCC) to evaluate the
performance of the proposed IQA branch. TensorFlow is cho-
sen as deep learning framework to implement our model.

Table 1. TESTING CLASSIFICSATION RESULTS OF
DIFFERENCE METHODS

Methods Overall Accurary (%)
BoVW [3] 76.81

Pyramid of Spatial Relations [1] 89.10
Gradient Boosting Random CNNs [4] 94.53

Fine-tuning GoogLeNet [3] 97.10
Our Proposed Method 98.57

We compare our method with some advanced ones for
scene classification like BoVW [3], Pyramid of Spatial Re-
lations [1], Gradient Boosting Random CNNs [4] and Fine-
tuning GoogLeNet [3]. As illustrated in Table. 1, traditional
methods achieve poor performance, while CNN-based ap-
proaches are very effective which improve performance sig-
nificantly. The proposed method in this paper achieves the
best scene classification performance, which indicates the ac-
tive influence of both IQA module and image super-resolution
module.

Table 2. PERFORMANCE OF QUALITY ASSESSMENT
ON UCM DATASET AFTER DATA AUGMENTASTION

Methods LCC SROCC
IQA-CNN [9] 0.834 0.810

Our Proposed Method 0.891 0.850

In order to evaluate the performance of our proposed IQA
module, we compare it with IQA-CNN [9] as shown in Ta-
ble. 2. Experiments on IQA performance evaluation were
conducted on the UCM dataset after data augmentation. As
can be seen in Table. 2, our method outperforms IQA-CNN
algorithm [9], which shows that the proposed multi-task ar-
chitecture is reliable.

4. CONCLUSIONS

In this paper, a novel multi-task architecture based on CNN
is proposed for scene classification and image quality assess-
ment (IQA). The robustness and performance of classifica-
tion are both improved by applying IQA and image super-
resolution. The experimental results on UC Merced Land-Use

dataset after data augmentation demonstrate its effectiveness
of our proposed method.
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